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The electron-phonon interaction is well known to enhance the low-temperature 
electronic heat capacity of metals, Ce~. At high temperatures this enhancement 
vanishes, but the electron-phonon interaction gives the electrons a finite 
lifetime. That means a broadened density of states, which affects the high-tem- 
perature Cel. Starting from a many-body theory expression for the entropy, this 
paper presents an analytical calculation of the correction to Cel and a numerical 
calculation of Cel from a realistic density-of-states function, N(e). The effect 
arising from the broadening of N(e) may have any sign and typically alters the 
heat capacity by 10 % or less in transition metals. 
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1. I N T R O D U C T I O N  

It is the purpose of this paper  to discuss corrections to the Sommerfeld 

model  for the electronic heat capacity of metals, Col, arising from the elec- 
t r o n - p h o n o n  interact ions at high temperatures.  The Sommerfeld theory 
leads to the wel l -known result [ 1 ] 

2/z2 2 
Gel = T kB TN(ev )  (1 

N(ev)  is the electronic density of states for one spin direct ion at the Fermi  
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level. Electron-phonon many-body interactions will modify Eq. (1) at low 
temperatures. We can write [-2] 

Cel = Cband (T)(1 + 2el_ ph) (2) 

where 2el-ph is the electron-phonon mass enhancement parameter and 
Cband(T) is the heat capacity in the Sommerfeld model. If N(e)  can not be 
regarded as a constant, one may expand it as 

N(g) = N o + (5 - gv) N'  + �89 - ev):N" (3) 

Here N~ N ' = d N ( e ) / & ,  and N"=dZN(g) /d~  2 are evaluated at 
= gV. This expansion, together with the Sommerfeld model, gives to the 

order T 3 [1 ], 

2~z2 k 2 TN(ev)  1 + - -  (4) 
Cb.nd = 7 -  2 J J 

The corrections involving N' and N" in Eq. (4) may become important at 
high temperatures. Since 2el-ph goes to zero rapidly for T~> 0D/4, where 0o 
is the Debye temperature, Eq. (4) might then be expected to give a good 
account of the electronic heat capacity. However, at the same time that 
~e~ ph tends to zero, the dectron-phonon interaction gives the band elec- 
trons a finite lifetime. This affects N(~) and hence implies a correction to 
the high temperature form of C~. We shall see that the finite lifetime affects 
Cel, but only if the energy dependence of N(e) near ~v is significant. We 
may remark that the effect of a varying N(e)  has recently been studied in 
connection with other electronic properties. For instance, Mitrovi6 and 
Carbotte [3] considered the effects of a nonconstant N(~), together with 
electron-phonon interactions, on the tunneling conductance in supercon- 
ductors. Picket [-4] discussed the effect of the electron-phonon interaction 
on the electronic distribution function at finite temperatures, with an 
applications to the spin susceptibility. The mass enhancement parameters, 
2~_ph, for A15 compounds with sharp structures in N(~), were calculated 
by Klein et al. [5]. In this paper, ! have studied the effect of the elec- 
tron-phonon interaction (the finite electron lifetime) on the electronic heat 
capacity, C~l, at high temperatures. Preliminary work on this problem has 
been presented by Grimvall [6] in a paper on titanium. 
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2. G E N E R A L  T H E O R Y  

It is convenient to start from an entropy expression given by Grim- 
vall [7]:  

V 1 
f co Of) [-In GR(co , k; T) - I n  G A ( c o  , k ;  T)] de) 

(5) 

where V is the specimen volume, f(co) is the Fermi factor, and GR and G A 

denote retarded and advanced Green functions. GR is defined as 

GR(CO, k; T ) =  [co-e(k)-ReM(co, k; T)- i lmM(co,  k; T)] -1 (6) 

GA is the complex conjugate of GR. Further, e(k) is the electron band 
energy for a state of wave vector k, and M(co, k; T) is the contribution to 
the electron self-energy from the electron-phonon interaction. All energies 
are counted relative to the chemical potential, p = 0. 

We now express Eq. (5) as an integral containing N(e). We assume 
that the system is isotropic and use the formula 

(2~-) 3 dak('") = -oo de N(e)(...) (7) 

to rewrite Eq. (5) as 

1 f ~ f ~176 ( O f )  [In GR--ln GA] de) (8) Sel  = ~---"-~ d~ ,  N ( e ) co 
l T oo - c o  

At high temperatures, we have Re M =  0, Im M =  F, where F =  F(T)= 
~2el-phkB T [2]. The relation In z = ln]z[ + i arg z, used in Eq. (8), gives 

2 T f ~  f 2  (~f)~b(co,~)dco (9) Sel = -  de N ( e ) co -~m 
oo 

Here 

 (co, = 
--oo 

F 
dE (E - ~)2 + / ,2  

F 
- arctan - -  

CO--,S 

F 
rc - arctan - -  

CO--~  

c o < g  

c o > g  

(10) 
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Integration of Eq. (9) with respect to co yields 

where 

_ _ _ i  ~o ;~ N(~)r 
S~,= 2kBn - ~  d E g ( E )  o~ de ( E _ e ) 2 + F  2 (11) 

g(E)  = f ( E ) I n  f (E)  + [1 - f i E ) ]  In [1 - f ( E ) ]  (12) 

N(~) - 

Then Eq. (11) can be written as 

NO 
1 + (e/a) 2 

f ~ F + a  (18) S d = - 2 k s N o a  -0o d E g ( E )  ( F +  a) 2 + E 2 

This integral cannot be solved exactly, but in the limit kB T / ( F +  a ) ~  1, one 
finds, with Cel = T(SSel/ST), 

27~'2 k2 TNO ( /~+a)2 [ l 7 (2"~kB T~21 
Ce,=~-- - 5 \ r + a /  J 

= Co( 1 -1- 7a -'}- 7F) (19) 

(17) 

3. T W O  A N A L Y T I C A L  M O D E L  C A L C U L A T I O N S  

One part of the integrand in Eq. (11) is 

I(E) =-1 & N(e) r 
rc ~ ( E - ~ ) 2 + F  2 (13) 

We now consider two analytical expressions for N(e). With 

N ( e ) = N ~  (14) 

we easily obtain the entropy as 

2~2 2 
S e l = - - ~  kB TA m (15) 

Hence the finite F has no effect in this case. The same result is obtained if 

N(e) = N O q- Nodd(8 ) (16) 

where Nodd(8) is an odd function in ~; Nodd(--e ) = --Nodd(e ). 
Next, we take 
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Co is the heat capacity given by Eq. (1), ~a is the correction factor due to 
varying N(E) when F ~  0, 

7 (~- - -T)  2 
~)a = - - ' 5  ( 2 0 )  

and 7r denotes the correction factor due to electron-phonon interaction: 

_V 1 _ a 2 7 a 4 

7r = L 
If F ~ a ,  

2 r  
7 r = - - - - a - + 5 \  a /  a (22) 

The quantity Yr arises because of the finite F, but it also contains effects of 
a nonconstant N(e) through the parameter a. 

4. A NUMERICAL CALCULATION 

In most realistic cases, N(e) is not of such a form that one can apply 
the analytical results given in Sect. 3. Then it is necessary to perform a full 
numerical integration. I have made a model calculation for N(8) having the 
shape of rectangular double wells: 

No, 

N(8) = No/2, 

No, 

181 <81 

81 ~< [zl < 3~ 

181 > 381 

(23) 

I choose 81 = 0.1 eV. Equation (11) has then been used, together with Cel = 
T(~Sd/OT). Curve A in Fig. 1 shows Cel with F =  1.5 kB T. In curve B, F is 
equal to zero. In curve C, Cei according to Eq. (1) is shown. The most 
characteristic feature of C~l in Fig. 1 perhaps is the fact that curves A and B 
cross. The following gives a crude argument for that effect. The entropy in 
Eq. (11) weights the effective density of states I(E), Eq. (13), by a weight 
function g(E). The heat capacity Cel has a term which weights I(E) by the 
function W(E)= (E/kB T) 2 (-~3f/~3E). W(E) has two peaks, centered at E =  
4-2.4k B T. Crudely, Col is therefore proportional to the effective densities of 
states I(-4-2.4kB T). Now I(E) for the unbroadened potential well, Eq. (23), 
is higher than I(E) of the broadened case when IEI < 81 but lower when E 
falls within the square well. This accounts qualitatively for the crossover of 
the curves A and B in Fig. 1. 

840/7/6 6 
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Fig. 1. The electronic heat capacity Cel (in arbitrary units) as a function of tem- 
perature, based on a model density of states, N(e). Here N(e) is given in the inset. 
Curve A is a full numerical calculation based on N(e), including finite electron lifetime 
effects due to electron-phonon interactions. In curve B these effects are neglected. 
Curve C is the standard result, (2/~2/3)k 2 TN(eF). 

5. NUMERICAL EXAMPLES FOR REAL METALS 

The electronic heat capacity has been calculated for a realistic N(e) of 
a transition metal, starting from Eq. (11) for the entropy and with a 
numerical evaluation of the temperature-dependent chemical potential, 
#(T). I have chosen N(e) of vanadium [8], given in the inset in Fig. 2, and 
•el ph = 1.0. Curve A in Fig. 2 shows Col with F =  3.14 k B T. In curve B, F is 
equal to zero, and in curve C, Col according to Eq. (1) is shown. 

I have repeated calculations, like those above for V, with N(e) for Sc, 
Y, Zr, Ti, Nb, Mo, Tc, Pd, Rh, and Ru, taken from Ref. 8. In some of these 
cases (Y, Zr, Ti, Mo, Tc), C,1 for the broadened density of states is larger 
than for the unbroadened case, while Nb shows the opposite behavior. For 
Rh and Sc, C~ values of the broadened and unbroadened cases cross, in 
analogy to the result given in Fig. 1. In none of the investigated metals do 
C~l values of the broadened and unbroadened cases differ by more than 
12 % for temperatures below.1500 K. It should be noted that the electronic 
density of states, as calculated by two different authors, may be quite dif- 
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Fig. 2. The electronic heat capacity Cel (in arbitrary units) as a function 
of temperature, based on a realistic electronic density of states for 
vanadium, N(e). Curve A is a full numerical calculation based on N(e), 
including finite electron lifetime effects due to electron-phonon interac- 
tions. In curve B these effects are neglected. Curve C is the standard 
result, (27r2/3)k~ TN(~F). The inset gives the actual shape of N(~) [8].  

ferent in the details of importance here. Therefore my numerical results 
should be considered more to give a general trend than to be precise results 
for specific elements. 

6. DISCUSSION AND CONCLUSIONS 

Many physical properties depend on the electronic density of states, 
N(e), at the Fermi level. For a slowly varying N(e), it may be sufficient to 
consider the Fermi-level value, N(~F) .  When N(e) is strongly varying with e 
within the range of energies probed by a certain physical property, it is 
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necessary to consider the detailed shape of N(e). The electron-phonon 
interaction leads to a finite lifetime for the conduction electrons, i.e., each 
electron state has a certain energy width. This smoothens the density of 
states obtained by a band structure calculations. In this paper, it is 
investigated how the broadening of the electron states affects the high-tem- 
perature electronic heat capacity Cd. Using realistic density-of-states curves 
for transition metals, it is found that the correction in Cel, relative to the 
result of an unbroadened density of states, usually is less than 12 %. The 
correction may have any sign, and it may change sign as a function of tem- 
perature. 
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