# **Corrections to the Electronic Heat Capacity of Metals Due to Finite Lifetimes of the Conduction Electrons**

## M. Thiessen<sup>1</sup>

Received December 23, 1985

The electron-phonon interaction is well known to enhance the low-temperature electronic heat capacity of metals,  $C_{\rm el}$ . At high temperatures this enhancement vanishes, but the electron-phonon interaction gives the electrons a finite lifetime. That means a broadened density of states, which affects the high-temperature  $C_{\rm el}$ . Starting from a many-body theory expression for the entropy, this paper presents an analytical calculation of the correction to  $C_{\rm el}$  and a numerical calculation of  $C_{\rm el}$  from a realistic density-of-states function,  $N(\varepsilon)$ . The effect arising from the broadening of  $N(\varepsilon)$  may have any sign and typically alters the heat capacity by 10% or less in transition metals.

**KEY WORDS:** electronic heat capacity; electron-phonon interaction; electronic density of states; electronic entropy; heat capacity; metals; solid-state physics.

#### **1. INTRODUCTION**

It is the purpose of this paper to discuss corrections to the Sommerfeld model for the electronic heat capacity of metals,  $C_{\rm el}$ , arising from the electron-phonon interactions at high temperatures. The Sommerfeld theory leads to the well-known result [1]

$$C_{\rm el} = \frac{2\pi^2}{3} k_{\rm B}^2 T N(\varepsilon_{\rm F}) \tag{1}$$

 $N(\varepsilon_{\rm F})$  is the electronic density of states for one spin direction at the Fermi

1183

<sup>&</sup>lt;sup>1</sup> Department of Theoretical Physics, The Royal Institute of Technology, S-100 44 Stockholm, Sweden.

level. Electron-phonon many-body interactions will modify Eq. (1) at low temperatures. We can write [2]

$$C_{\rm el} = C_{\rm band}(T)(1 + \lambda_{\rm el-ph})$$
<sup>(2)</sup>

where  $\lambda_{el-ph}$  is the electron-phonon mass enhancement parameter and  $C_{band}(T)$  is the heat capacity in the Sommerfeld model. If  $N(\varepsilon)$  can not be regarded as a constant, one may expand it as

$$N(\varepsilon) = N^{0} + (\varepsilon - \varepsilon_{\rm F}) N' + \frac{1}{2} (\varepsilon - \varepsilon_{\rm F})^{2} N''$$
(3)

Here  $N^0 = N(\varepsilon_F)$ ,  $N' = dN(\varepsilon)/d\varepsilon$ , and  $N'' = d^2N(\varepsilon)/d\varepsilon^2$  are evaluated at  $\varepsilon = \varepsilon_F$ . This expansion, together with the Sommerfeld model, gives to the order  $T^3$  [1],

$$C_{\text{band}} = \frac{2\pi^2}{3} k_{\text{B}}^2 T N(\varepsilon_{\text{F}}) \left\{ 1 + \frac{(\pi k_{\text{B}} T)^2}{2} \left[ \frac{7}{5} \frac{N''}{N^0} - \left( \frac{N'}{N^0} \right)^2 \right] \right\}$$
(4)

The corrections involving N' and N'' in Eq. (4) may become important at high temperatures. Since  $\lambda_{el-ph}$  goes to zero rapidly for  $T \ge \theta_D/4$ , where  $\theta_D$ is the Debye temperature, Eq. (4) might then be expected to give a good account of the electronic heat capacity. However, at the same time that  $\lambda_{el-ph}$  tends to zero, the electron-phonon interaction gives the band electrons a finite lifetime. This affects  $N(\varepsilon)$  and hence implies a correction to the high temperature form of  $C_{el}$ . We shall see that the finite lifetime affects  $C_{\rm el}$ , but only if the energy dependence of  $N(\varepsilon)$  near  $\varepsilon_{\rm F}$  is significant. We may remark that the effect of a varying  $N(\varepsilon)$  has recently been studied in connection with other electronic properties. For instance, Mitrović and Carbotte [3] considered the effects of a nonconstant  $N(\varepsilon)$ , together with electron-phonon interactions, on the tunneling conductance in superconductors. Picket [4] discussed the effect of the electron-phonon interaction on the electronic distribution function at finite temperatures, with an applications to the spin susceptibility. The mass enhancement parameters,  $\lambda_{el-ph}$ , for A15 compounds with sharp structures in  $N(\varepsilon)$ , were calculated by Klein et al. [5]. In this paper, I have studied the effect of the electron-phonon interaction (the finite electron lifetime) on the electronic heat capacity,  $C_{\rm el}$ , at high temperatures. Preliminary work on this problem has been presented by Grimvall [6] in a paper on titanium.

#### **2. GENERAL THEORY**

It is convenient to start from an entropy expression given by Grimvall [7]:

$$S_{\rm el} = \frac{V}{(2\pi)^3} \frac{1}{i\pi T} \int d^3k \int_{-\infty}^{\infty} \omega \left( -\frac{\partial f}{\partial \omega} \right) \left[ \ln G_{\rm R}(\omega, k; T) - \ln G_{\rm A}(\omega, k; T) \right] d\omega$$
(5)

where V is the specimen volume,  $f(\omega)$  is the Fermi factor, and  $G_R$  and  $G_A$  denote retarded and advanced Green functions.  $G_R$  is defined as

$$G_{\mathbf{R}}(\omega, k; T) = [\omega - \varepsilon(k) - \operatorname{Re} M(\omega, k; T) - i \operatorname{Im} M(\omega, k; T)]^{-1}$$
(6)

 $G_{\rm A}$  is the complex conjugate of  $G_{\rm R}$ . Further,  $\varepsilon(k)$  is the electron band energy for a state of wave vector k, and  $M(\omega, k; T)$  is the contribution to the electron self-energy from the electron-phonon interaction. All energies are counted relative to the chemical potential,  $\mu = 0$ .

We now express Eq. (5) as an integral containing  $N(\varepsilon)$ . We assume that the system is isotropic and use the formula

$$\frac{V}{(2\pi)^3} \int d^3k(...) = \int_{-\infty}^{\infty} d\varepsilon \, N(\varepsilon)(...)$$
(7)

to rewrite Eq. (5) as

$$S_{\rm el} = \frac{1}{i\pi T} \int_{-\infty}^{\infty} d\varepsilon \, N(\varepsilon) \int_{-\infty}^{\infty} \omega \left(\frac{\partial f}{\partial \omega}\right) \left[\ln G_{\rm R} - \ln G_{\rm A}\right] d\omega \tag{8}$$

At high temperatures, we have Re M = 0, Im  $M = \Gamma$ , where  $\Gamma = \Gamma(T) = \pi \lambda_{\text{el-ph}} k_{\text{B}} T$  [2]. The relation  $\ln z = \ln |z| + i \arg z$ , used in Eq. (8), gives

$$S_{\rm el} = \frac{2}{\pi T} \int_{-\infty}^{\infty} d\varepsilon \, N(\varepsilon) \int_{-\infty}^{\infty} \omega \left(\frac{\partial f}{\partial \omega}\right) \Phi(\omega, \varepsilon) \, d\omega \tag{9}$$

Here

$$\Phi(\omega,\varepsilon) = \int_{-\infty}^{\omega} dE \frac{\Gamma}{(E-\varepsilon)^2 + \Gamma^2} = \begin{cases} -\arctan\frac{\Gamma}{\omega-\varepsilon}, & \omega < \varepsilon \\ \pi - \arctan\frac{\Gamma}{\omega-\varepsilon}, & \omega > \varepsilon \end{cases}$$
(10)

Thiessen

Integration of Eq. (9) with respect to  $\omega$  yields

$$S_{\rm el} = -\frac{2k_{\rm B}}{\pi} \int_{-\infty}^{\infty} dE \, g(E) \int_{-\infty}^{\infty} d\varepsilon \, \frac{N(\varepsilon) \, \Gamma}{(E-\varepsilon)^2 + \Gamma^2} \tag{11}$$

where

$$g(E) = f(E) \ln f(E) + [1 - f(E)] \ln [1 - f(E)]$$
(12)

# 3. TWO ANALYTICAL MODEL CALCULATIONS

One part of the integrand in Eq. (11) is

$$I(E) = \frac{1}{\pi} \int_{-\infty}^{\infty} d\varepsilon \frac{N(\varepsilon) \Gamma}{(E-\varepsilon)^2 + \Gamma^2}$$
(13)

We now consider two analytical expressions for  $N(\varepsilon)$ . With

$$N(\varepsilon) = N^0 + N'\varepsilon \tag{14}$$

we easily obtain the entropy as

$$S_{\rm el} = \frac{2\pi^2}{3} k_{\rm B}^2 T N^0 \tag{15}$$

Hence the finite  $\Gamma$  has no effect in this case. The same result is obtained if

$$N(\varepsilon) = N^0 + N_{\rm odd}(\varepsilon) \tag{16}$$

where  $N_{\text{odd}}(\varepsilon)$  is an odd function in  $\varepsilon$ ;  $N_{\text{odd}}(-\varepsilon) = -N_{\text{odd}}(\varepsilon)$ .

Next, we take

$$N(\varepsilon) = \frac{N^0}{1 + (\varepsilon/a)^2} \tag{17}$$

Then Eq. (11) can be written as

$$S_{\rm el} = -2k_{\rm B}N^0 a \int_{-\infty}^{\infty} dE \, g(E) \frac{\Gamma + a}{(\Gamma + a)^2 + E^2}$$
(18)

This integral cannot be solved exactly, but in the limit  $k_{\rm B}T/(\Gamma + a) \ll 1$ , one finds, with  $C_{\rm el} = T(\partial S_{\rm el}/\partial T)$ ,

$$C_{\rm el} = \frac{2\pi^2}{3} k_{\rm B}^2 T N^0 \left(\frac{a}{\Gamma+a}\right)^2 \left[1 - \frac{7}{5} \left(\frac{\pi k_{\rm B} T}{\Gamma+a}\right)^2\right]$$
$$= C_0 (1 + \gamma_a + \gamma_{\Gamma})$$
(19)

1186

#### **Electronic Heat Capacity of Metals**

 $C_0$  is the heat capacity given by Eq. (1),  $\gamma_a$  is the correction factor due to varying  $N(\varepsilon)$  when  $\Gamma \to 0$ ,

$$\gamma_a = -\frac{7}{5} \left(\frac{\pi k_{\rm B} T}{a}\right)^2 \tag{20}$$

and  $\gamma_{\Gamma}$  denotes the correction factor due to electron-phonon interaction:

$$\gamma_{\Gamma} = -\left[1 - \left(\frac{a}{\Gamma+a}\right)^2\right] + \frac{7}{5}\left(\frac{\pi k_{\rm B}T}{a}\right)^2 \left[1 - \left(\frac{a}{\Gamma+a}\right)^4\right] \tag{21}$$

If  $\Gamma \ll a$ ,

$$\gamma_{\Gamma} = -\frac{2\Gamma}{a} + \frac{7}{5} \left(\frac{\pi k_{\rm B} T}{a}\right)^2 \frac{4\Gamma}{a} \tag{22}$$

The quantity  $\gamma_{\Gamma}$  arises because of the finite  $\Gamma$ , but it also contains effects of a nonconstant  $N(\varepsilon)$  through the parameter *a*.

## 4. A NUMERICAL CALCULATION

In most realistic cases,  $N(\varepsilon)$  is not of such a form that one can apply the analytical results given in Sect. 3. Then it is necessary to perform a full numerical integration. I have made a model calculation for  $N(\varepsilon)$  having the shape of rectangular double wells:

$$N(\varepsilon) = \begin{cases} N_0, & |\varepsilon| < \varepsilon_1 \\ N_0/2, & \varepsilon_1 \le |\varepsilon| < 3\varepsilon_1 \\ N_0, & |\varepsilon| \ge 3\varepsilon_1 \end{cases}$$
(23)

I choose  $\varepsilon_1 = 0.1$  eV. Equation (11) has then been used, together with  $C_{\rm el} = T(\partial S_{\rm el}/\partial T)$ . Curve A in Fig. 1 shows  $C_{\rm el}$  with  $\Gamma = 1.5 k_{\rm B} T$ . In curve B,  $\Gamma$  is equal to zero. In curve C,  $C_{\rm el}$  according to Eq. (1) is shown. The most characteristic feature of  $C_{\rm el}$  in Fig. 1 perhaps is the fact that curves A and B cross. The following gives a crude argument for that effect. The entropy in Eq. (11) weights the effective density of states I(E), Eq. (13), by a weight function g(E). The heat capacity  $C_{\rm el}$  has a term which weights I(E) by the function  $W(E) = (E/k_{\rm B}T)^2 (-\partial f/\partial E)$ . W(E) has two peaks, centered at  $E = \pm 2.4k_{\rm B}T$ . Crudely,  $C_{\rm el}$  is therefore proportional to the effective densities of states  $I(\pm 2.4k_{\rm B}T)$ . Now I(E) for the unbroadened potential well, Eq. (23), is higher than I(E) of the broadened case when  $|E| < \varepsilon_1$  but lower when E falls within the square well. This accounts qualitatively for the crossover of the curves A and B in Fig. 1.



Fig. 1. The electronic heat capacity  $C_{\rm el}$  (in arbitrary units) as a function of temperature, based on a model density of states,  $N(\varepsilon)$ . Here  $N(\varepsilon)$  is given in the inset. Curve A is a full numerical calculation based on  $N(\varepsilon)$ , including finite electron lifetime effects due to electron-phonon interactions. In curve B these effects are neglected. Curve C is the standard result,  $(2\pi^2/3) k_{\rm B}^2 T N(\varepsilon_{\rm F})$ .

#### 5. NUMERICAL EXAMPLES FOR REAL METALS

The electronic heat capacity has been calculated for a realistic  $N(\varepsilon)$  of a transition metal, starting from Eq. (11) for the entropy and with a numerical evaluation of the temperature-dependent chemical potential,  $\mu(T)$ . I have chosen  $N(\varepsilon)$  of vanadium [8], given in the inset in Fig. 2, and  $\lambda_{\rm el-ph} = 1.0$ . Curve A in Fig. 2 shows  $C_{\rm el}$  with  $\Gamma = 3.14 k_{\rm B} T$ . In curve B,  $\Gamma$  is equal to zero, and in curve C,  $C_{\rm el}$  according to Eq. (1) is shown.

I have repeated calculations, like those above for V, with  $N(\varepsilon)$  for Sc, Y, Zr, Ti, Nb, Mo, Tc, Pd, Rh, and Ru, taken from Ref. 8. In some of these cases (Y, Zr, Ti, Mo, Tc),  $C_{el}$  for the broadened density of states is larger than for the unbroadened case, while Nb shows the opposite behavior. For Rh and Sc,  $C_{el}$  values of the broadened and unbroadened cases cross, in analogy to the result given in Fig. 1. In none of the investigated metals do  $C_{el}$  values of the broadened and unbroadened cases differ by more than 12% for temperatures below.1500 K. It should be noted that the electronic density of states, as calculated by two different authors, may be quite dif-



Fig. 2. The electronic heat capacity  $C_{\rm el}$  (in arbitrary units) as a function of temperature, based on a realistic electronic density of states for vanadium,  $N(\varepsilon)$ . Curve A is a full numerical calculation based on  $N(\varepsilon)$ , including finite electron lifetime effects due to electron-phonon interactions. In curve B these effects are neglected. Curve C is the standard result,  $(2\pi^2/3) k_{\rm B}^2 TN(\varepsilon_{\rm F})$ . The inset gives the actual shape of  $N(\varepsilon)$  [8].

ferent in the details of importance here. Therefore my numerical results should be considered more to give a general trend than to be precise results for specific elements.

# 6. DISCUSSION AND CONCLUSIONS

Many physical properties depend on the electronic density of states,  $N(\varepsilon)$ , at the Fermi level. For a slowly varying  $N(\varepsilon)$ , it may be sufficient to consider the Fermi-level value,  $N(\varepsilon_{\rm F})$ . When  $N(\varepsilon)$  is strongly varying with  $\varepsilon$  within the range of energies probed by a certain physical property, it is

necessary to consider the detailed shape of  $N(\varepsilon)$ . The electron-phonon interaction leads to a finite lifetime for the conduction electrons, i.e., each electron state has a certain energy width. This smoothens the density of states obtained by a band structure calculations. In this paper, it is investigated how the broadening of the electron states affects the high-temperature electronic heat capacity  $C_{\rm el}$ . Using realistic density-of-states curves for transition metals, it is found that the correction in  $C_{\rm el}$ , relative to the result of an unbroadened density of states, usually is less than 12%. The correction may have any sign, and it may change sign as a function of temperature.

# ACKNOWLEDGMENTS

I want to thank G. Grimvall for discussions and help during my work. This work has been supported in part by the Swedish Natural Science Council.

#### REFERENCES

- 1. A. H. Wilson, *The Theory of Metals* (Cambridge University Press, Cambridge, 1958), Chap. 6.2.
- 2. G. Grimvall, The Electron-Phonon Interaction in Metals (North-Holland, Amsterdam, 1981), p. 95.
- 3. B. Mitrović and J. P. Carbotte, Can. J. Phys. 61:784 (1983).
- 4. W. E. Picket, Phys. Rev. Lett. 48:1548 (1982).
- 5. B. M. Klein, L. L. Boyer, and D. A. Papaconstantopoulos, Phys. Rev. Lett. 42:530 (1979).
- 6. G. Grimvall, Inst. Phys. Conf. Ser. 39:174 (1978).
- 7. G. Grimvall, Phys. kondens. Materie 9:283 (1969).
- V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic Properties of Metals (Pergamon, Oxford, 1978).